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Abstract
The basic principles behind a path integral approach to the lattice polaron
are reviewed. Analytical integration of phonons reduces the problem to one
self-interacting imaginary-time path, which is then simulated by Metropolis
Monte Carlo. Projection operators separate states of different symmetry, which
provides access to various excited states. Shifted boundary conditions in
imaginary time enable calculation of the polaron mass, spectrum and density
of states. Other polaron characteristics accessible by the method include the
polaron energy, number of excited phonons and isotope exponent on mass.
Monte Carlo updates are formulated in continuous imaginary time on infinite
lattices and as such provide statistically unbiased results without finite-size and
finite time-step errors. Numerical data are presented for models with short-
range and long-range electron–phonon interactions.

1. Introduction

The polaron has been a testing ground for novel theoretical methods for three-quarters of a
century. Perhaps the best example is the statistical path integral (PI) that was applied to the
Fröhlich polaron by Feynman in 1955 [1], just a few years after the invention of the PI. The
combination of analytical integration of phonons and a variational principle proved so powerful
that this approach has dominated the physics of the Fröhlich polaron for decades [2–17], and
continues to do so today 50 years after the seminal paper. PI has not been utilized for a long
time in the physics of small or lattice polarons. Although the phonons could be integrated as
well leading to a self-interacting one-electron system, the absence of a convenient trial action
rendered the variational part of the calculation intractable. The situation changed in 1982 when
de Raedt and Lagendijk (DRL) noticed that the self-interaction can be instead simulated on
a computer by Metropolis Monte Carlo (MC) [18–21]. This paved the way to an efficient
MC algorithm that provided accurate polaron energies and static correlation functions. Later
on, the DRL method was re-formulated in continuous time that removed the finite time-step
systematic error [22]. Application of open boundary conditions in imaginary time enabled
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unbiased calculations of such important polaron properties as the effective mass, spectrum,
density of states and the isotope exponent on mass [23–29].

Thus, the continuous-time path-integral quantum MC (PIQMC) became another
theoretical tool tested on the polaron problem. It is not the only MC method available for
analysis of the polaron problem. Other powerful methods developed in the last decade include
the diagrammatic MC [30–32] and Lang–Firsov MC [33, 34]. All methods have their own
advantages and limitations.

In this paper the main principles behind the PIQMC polaron method are reviewed.
Particular attention is paid to the use of projection operators that allow access to excited
states of different symmetries. Phonon integration is performed for open boundary conditions
in imaginary time, which are necessary for calculating the polaron mass. A number of
numerical results on the polaron properties are presented for both the short-range Holstein
and long-range electron–phonon (e–ph) interactions. In particular, it is shown that a long-
range e–ph interaction dramatically reduces the polaron mass, and anisotropic e–ph interaction
exponentially enhances the anisotropy of the polaron spectrum.

2. Projected partition functions

A thermodynamic partition function receives contributions from all states of a many-body
system. If the system possesses a global symmetry, however, the entire Hilbert space can
be subdivided into sectors which correspond to different irreducible representations of the
symmetry group G. Because the system remains within the sector during its evolution, it is
meaningful to compose a partial partition function which runs over just one sector. Then the
full partition function is simply a sum of the partial partition functions.

This idea can be translated into the language of PI. The conventional statistical PI is
developed from the trace of the density matrix

Z =
∑

R

〈R|e−βH |R〉 =
∑

R

∫ (R,β)

(R,0)

DR(τ )W [R(τ )], (1)

where R is a many-body real-space configuration, H is the Hamiltonian, β = (kBT )−1, τ is the
imaginary time, 0 � τ � β and W is the statistical weight of path R(τ ). In contrast, a partial
partition function corresponding to an irreducible representation U leads to the following PI

ZU =
∑

R

〈R|O†
U e−βH OU |R〉 =

∑

R

∑

T

OU (T )

∫ (T R,β)

(R,0)

DR(τ )W [R(τ )]. (2)

Here T is a symmetry operator of group G, while the operator OU creates a basis state of U
from any real-space configuration R. In this PI, the initial configuration of the path (at τ = 0)
and the final configuration of the path (at τ = β) differ by a symmetry transformation T . After
that, the operation

∑
T OU (T ) projects the PI on the U sector of Hilbert space. For this reason

the partial partition functions will hereafter be called projected partition functions. In the low-
temperature limit β → ∞, equation (2) provides access to the ground state of sector U , in the
same manner as the conventional PI provides access to the global ground state.

There exist multiple instances when this approach yields important information about
excited states of a quantum-mechanical system. For example, for a system of identical
particles, G is the permutation group, T is a permutation operator P and U is a particular
representation of G, defined by the corresponding Young table. Thus in a Monte Carlo process
the top ends of the paths are constantly permutated with respect to the bottom ends of the
paths [35]. The operator OS(P) = (+1) for the fully symmetric representation (bosons) and
OA(P) = (−1)parity of P for the fully antisymmetric representation (spinless fermions); there
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are more complex forms for other representations. In polaron physics, this approach can be
applied to separate singlet and triplet bipolarons. Analogously, by allowing 90◦ rotations of
the top ends with respect to the bottom ones, it is possible to separate s- and d-symmetric
bipolarons on the square lattice.

Another important global symmetry is translation invariance. In this case, T is the
translation operator, U is labelled by the total lattice momentum K and OK(T�r) = eiK�r,
where �r is the parallel-shift vector between the top and bottom path ends. Equation (2) then
provides the ground state energy as a function of K. For the case of one or two particles
interacting with phonons, this implies the (bi)polaron spectrum E(K), the effective mass, the
density of states and their derivatives. Equation (2) becomes

ZK =
∑

�r

eiK�r〈R + �r|e−βH |R〉 =
∑

�r

eiK�r
∫ (R+�r,β)

(R,0)

DR(τ )W [R(τ )], (3)

where R + �r denotes ‘configuration R parallel-shifted by �r’. A Monte Carlo process
constantly updates �r by parallel-shifting the top configuration relative to the bottom one.
Then the operation

∑
�r exp(iK�r) projects simulation on a particular lattice momentum K.

For a detailed derivation of (3), see [24, 36].
Once the update process has been established, the observables are obtained in the usual

manner. The ground state energy of a (bi)polaron (i.e. at K = 0) can be found as the low-
temperature limit of the internal energy E0 = −∂ ln Z0/∂β . Applying this to equation (3) one
obtains

E0 =
∑

�r

∫ (R+�r,β)

(R,0)
DR(τ )

[− 1
W

∂W
∂β

]
W [R(τ )]

∑
�r

∫ (R+�r,β)

(R,0)
DR(τ )W [R(τ )]

=
〈
− 1

W

∂W

∂β

〉

shift

, (4)

where the subscript means that averaging is performed under the shifted boundary conditions in
imaginary time. A specific expression for the combination in angular brackets will be derived
below. Next, by taking the ratio of ZK and Z0 one obtains the estimator for the (bi)polaron
spectrum

EK − E0 = − lim
β→∞

1

β
ln〈cos K�r〉shift. (5)

This expression contains a sign problem: if the energy difference being calculated is
significantly larger than the temperature, the mean cosine becomes exponentially small.
However, when the energy difference is comparable with temperature, this estimator is stable.
Note that statistics for multiple lattice momenta can be collected in a single MC run. This
enables efficient calculation of the (bi)polaron density of states by histogramming energy values
at the end of simulations. Expansion of the last expression for small K yields another important
estimator, the μth component of the (bi)polaron inverse effective mass

1

m∗
μ

= lim
β→∞

〈(�rμ)2〉shift

h̄2β
. (6)

If β is regarded as diffusion time and 〈(�rμ)2〉 as a mean-squared diffusion distance then the
inverse mass is the diffusion coefficient of an open-ended imaginary path. This relation holds
for any composite particle.

3. Polaron action

The results derived in the previous section apply to any quantum-mechanical system. The
specific feature of a polaron system is a strong interaction between a small number of electrons
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and a large number of phonons. In the following, the consideration will be limited to a generic
‘density–displacement’ electron–phonon (e–ph) Hamiltonian

H = −t
∑

nn′
c†

n′cn −
∑

nm

fm(n)c†
n′ cnξm +

∑

m

(
− h̄2

2M

∂2

∂ξ 2
m

+ Mω2

2
ξ 2

m

)
. (7)

The electron subsystem is represented by a single band with nearest-neighbour hopping
amplitude t , and the phonon subsystem by a set of non-interacting Einstein oscillators with
frequency ω and ion mass M . Both restrictions are non-critical and can be handled by the
present approach [37]. Here most attention will be devoted to the middle e–ph term. The
function fm(n) is the force with which an electron at site n is acting on oscillator ξm. Function
f is subjected to obvious physical restrictions, but is arbitrary otherwise. In particular it
can be short-range (Holstein interaction) as well as long-range (Fröhlich interaction) and
anisotropic. In the atomic limit, t = 0, a static polaron experiences a downward energy shift
of Ep = (2Mω2)−1

∑
m f 2

m(0) (the polaron shift), which can be taken as a measure of the
strength of e–ph interaction. The respective dimensionless quantity is the ratio of Ep and some
measure of the electron kinetic energy, e.g. zt , where z is the number of nearest neighbours on
the lattice:

λ = Ep

zt
= 1

2Mω2zt

∑

m

f 2
m(0). (8)

For the short-range Holstein interaction, fm(n) = κδnm, and λ = κ2/(2Mω2zt). The second
parameter of the model is the adiabaticity ratio ω̄ ≡ h̄ω/t .

A key element of the PI polaron method is analytical integration of phonon variables.
Following Feynman it can be done exactly [1, 38]. Phonon integration results in self- and
cross-interaction of polaron paths. Because the phonons possess their own dynamics, the
interactions are retarded. This means that different parts of a polaron path ‘feel’ each other if
they are separated in imaginary time by less than inverse phonon frequency. The self-interaction
increases the statistical weight of straighter paths, making them on average more rigid. That
means that an open-ended path diffuses less in imaginary time, which by virtue of (6) implies
an enhanced effective mass. Thus path integrals provide a useful visualization of mass increase
caused by interaction with phonons.

In performing phonon integration it is important to keep in mind that the shifted boundary
conditions described in the previous section refer to the full set of system degrees of freedom.
Therefore the electron and ion coordinates are always correlated. If the electron path is shifted
by a vector �r between times τ = 0 and β then the entire phonon configuration at τ = β

must be shifted with respect to τ = 0 by exactly �r (see figure 1(a)). As a result, the
boundary conditions for individual oscillators are not periodic but rather satisfy the condition
ξm(β) = ξm−�r(0). This is a subtle but important point, apparently missed by Feynman
himself. These new boundary conditions make the mass calculation self-consistent—for a
detailed discussion consult [36]. The full polaron action acquires a correction �A relative
to the familiar periodic expression A0 [22]

Apol[r(τ )] = A0 + �A, (9)

A0 =
∑

m

h̄

4ωM

∫ β

0

∫ β

0
d τ dτ ′ cosh h̄ω(

β

2 − |τ − τ ′|)
sinh h̄ω

β

2

Fm(τ )Fm(τ ′), (10)

�A =
∑

m

h̄

2ωM
Bm(Cm+�r − Cm), (11)

Bm ≡
∫ β

0
dτ ′ sinh h̄ω(β − τ ′)

sinh h̄ωβ
Fm(τ ′), (12)
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Figure 1. (a) Integration over ionic paths under shifted boundary conditions. Ionic displacements
are shown as vertical bars at τ = 0 and β. Note how the pattern of displacements is correlated
with the shift of the electron path. The end displacements of individual oscillators are not equal,
ξm(0) 
= ξm(β). (b) Calculation of the polaron action as a double integral over imaginary time. The
kink times τi breaks the (ττ ′) plane into a finite number of rectangles. Within each rectangle the
electron coordinates are constant and the double integral can be calculated analytically for arbitrary
τi [28]. After that the double integral reduces to a sum over the rectangles. Since the number of
rectangles decreases at strong coupling, the algorithm gets faster at strong coupling.

Cm ≡
∫ β

0
dτ ′ sinh h̄ωτ ′

sinh h̄ωβ
Fm(τ ′). (13)

This action increases the weight of electron paths as ∼ exp(A). The simple form of �A,
equation (11), is valid only when the condition exp(β h̄ω) � 1 is satisfied. The function Fm(τ )

is the force that the oscillator m experiences at time τ . For the one-electron (polaron) case, there
is only one path r(τ ) which is the sole source of force, hence Fm(τ ) = fm[r(τ )]. For the two-
particle (bipolaron) case, there are two electron paths, and Fm(τ ) = fm[r1(τ )] + fm[r2(τ )].
Since the action is quadratic in F , it breaks into four terms. The diagonal ones describe the
self-interaction of the two electron paths and are responsible for the polaronic effects. The
cross-terms describe the interaction between the paths and are responsible for polaron binding.
This distinction naturally carries over to the multi-electron case.

In general, numerical evaluation of the double integral in the above equation constitutes
a considerable technical difficulty. This task is greatly aided by the fact that on a lattice the
polaron path consists of a finite number of straight segments (see figure 1(a)). Within segment
i the electron position ri is constant. Consequently, force F(τ ) is constant, too, and hence
can be taken outside the time integration. Then the time double integral can be calculated
analytically, resulting in a simple analytical function of the segment end times A(τi , τ

′
i ; τ j, τ

′
j ).

Explicit expressions are given in [28]. The polaron action then becomes a double sum over the
segments (see figure 1(b)):

Apol =
∑

j�i

A(τi , τ
′
i ; τ j , τ

′
j )

∑

m

fm(ri ) fm(r j ) ≡
∑

j�i

A(τi , τ
′
i ; τ j , τ

′
j )�(ri − r j ), (14)

where the path confinement function �(r − r′) has been introduced. It is defined on a discrete
set of points and can be pre-computed for a sufficiently large range of coordinate separation.
After that action calculation takes essentially the same amount of time for any shape of the
electron–phonon interaction.
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4. Continuous-time Monte Carlo

On a lattice, an electron’s path can be specified by a set of kinks that connect the sites before and
after an electron’s hops, and by the times at which these hops occur. Between the neighbouring
kinks, the path is straight and occupies a particular lattice site. By expanding the short-time
propagator 〈r′| exp(−�τ Hkin)|r〉 to the first power in �τ , it is a simple matter to show that each
kink contributes to the path’s weight by a factor (t�τ), while each straight segment contributes
a factor of 1. In the continuous time limit �τ becomes infinitesimal. The partition function is a
sum over all possible paths, i.e. over different kink numbers and their times. The denominator
of equation (4) becomes (see also equation (3) at K = 0)

ZK=0 = Zph

∞∑

Nk =0,1,...

∫ β

0
· · ·

∫ β

0
(dτ )Nk t Nk eApol[r(τ )]. (15)

Here Zph = [2 sinh( 1
2 h̄βω)]−N (N is the number of lattice sites) is the partition function of free

phonons. It is a multiplicative constant that cancels out from all statistical averages. Apol is the
polaron action (9). The weight of the full path combines the ‘kinetic’ contribution (tdτ )Nk and
the ‘potential’ contribution exp(Apol). Note that because the two ends of a polaron path are not
tied together, the number of kinks Nk on the path can be arbitrary.

The integrand of the partition function (15) can be stochastically sampled, enabling
statistical averaging of observables. Updates that do not change the number of kinks on the
path are defined only by the potential contribution exp(Apol) of the configurations before and
after the update. Updates that do change Nk are trickier because they change the power of
the infinitesimal (dτ ), which renders direct comparison of the two weights impossible. These
updates are organized as follows. Consider an update when a kink at time τ is added to path
D. The resulting path is D′. The general detailed balance equation reads

W (D)Q(add at τ )P(D → D′) = W (D′)Q(remove at τ )P(D′ → D), (16)

where Q is the probability of proposing the update and P the probability of accepting
the suggestion. According to (15), W (D) = (t dτ )Nk exp{Apol(D)} and W (D) =
(t dτ )Nk+1 exp{Apol(D′)}. The probabilities Q on the two sides of the balance equation are
two different quantities. In the direct process, the probability of suggesting a kink in the
interval [τ, τ + dτ ] is proportional to the time interval dτ , and can therefore be represented
as Qadd(τ ) = q(τ ) dτ , where q(τ ) is the probability density of proposing the new kink at
time τ . In contrast, in the reciprocal process of removing a kink, the probability of suggesting a
particular kink from the existing Nk +1 is a finite number. Thus the relative smallness of W (D′)
is compensated by an additional (t dτ ) in Qadd. In the simplest update scheme, all kinks are
inserted with a constant probability density q(τ ) = β−1, and removed with equal probability
Qremove = (Nk + 1)−1. The balance equation becomes

(t�τ)Nk
1

β
(�τ)eApol(D) P(D → D′) = (t�τ)Nk +1 1

Nk + 1
eApol (D′) P(D′ → D). (17)

Following the recipe of Metropolis Monte Carlo [39], this equation leads to the following
acceptance rules:

P(D → D′) = min

{
1; βt

Nk + 1
eApol(D′)−Apol(D)

}
, (18)

P(D′ → D) = min

{
1; Nk + 1

βt
eApol(D)−Apol(D′)

}
. (19)

The above acceptance rules are valid for updates between configurations with non-zero kink
numbers, i.e. 1 ↔ 2, 2 ↔ 3, . . . For the transition 0 ↔ 1, one has to take into account that
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kinks can only be inserted if Nk = 0 while they can be inserted or removed if Nk = 1. This
results in an additional 1

2 in the acceptance rules: βt should be replaced with 1
2βt .

Once the sampling process is established, the polaron mass and spectrum can be measured
according to equations (6) and (5), respectively. The estimator for the ground state energy
of the polaron follows from the general formula (4) and the path’s weight W (Nk) =
(t dτ )Nk exp(Apol):

E0 =
〈
− Nk

β
− ∂ Apol

∂β

〉

shift

. (20)

The first term of the estimator is the kinetic energy of the polaron. (To derive it, it is convenient
to momentarily return to the discrete-time representation: dτ → β/L, where L is the number
of time slices, and then to differentiate with respect to β .) Note that each kink contributes the
same value of β−1. The second term in (20) is the potential energy of the polaron, that is the
sum of the electron–phonon energy and the energy of lattice deformation.

The number of excited phonons in the polaron cloud can be obtained by differentiating
the free energy F = − 1

β
ln Z with respect to the phonon frequency h̄ω while keeping the

combination λ/(Mω) constant. This condition ensures that the derivative will affect only the
free phonon part of the Hamiltonian. One obtains

Nph = − 1

β

∂ F

∂(h̄ω)

∣∣∣∣
λ

Mω

= − 1

β

〈
∂ Apol

∂(h̄ω)

∣∣∣∣
λ

Mω

〉

shift

. (21)

Another interesting (bi)polaron characteristic is the isotope exponent on the effective mass.
In the (bi)polaron mechanism of superconductivity, αμ is related to the isotope effect on the
critical temperature [40]. The mass isotope exponent is defined as m∗

μ = Mαμ , where M
is the ion mass. Since the present method calculates the inverse polaron mass, αμ is more
conveniently expressed via the inverse effective mass

αμ = − M
1

m∗
μ

∂

∂M

(
1

m∗
μ

)
= ω

2
(

1
m∗

μ

) ∂

∂ω

(
1

m∗
μ

)
. (22)

The last transformation follows from the scaling M ∝ ω−2. The estimator for αμ is derived
directly from the estimator for the inverse effective mass (6). A path’s weight depends on the
phonon frequency only via the polaron action exp(Apol). (One should keep in mind that the
definition of a Monte Carlo average 〈(�rμ)2〉 contains Apol in the numerator and denominator.)
Upon differentiation one obtains

αμ = ω

2〈(�rμ)2〉
[〈

(�rμ)2 ∂ Apol

∂ω

∣∣∣∣
Mω2

〉
− 〈(�rμ)2〉

〈
∂ Apol

∂ω

∣∣∣∣
Mω2

〉]
. (23)

In taking the frequency derivative, one should keep the combination Mω2 constant, as it is
independent of the ion mass. As with the phonon action and potential energy, the estimators
for the number of phonons and isotope exponent can be split into double sums over the path’s
segments. The expressions for the respective summands can be found in [28].

5. Polaron properties

In this section polaron properties obtained with the continuous-time path-integral Monte Carlo
method are reviewed [22, 24, 27, 25, 26, 28, 29].

7
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5.1. Mobile small polarons

A large polaron mass results from the small overlap of ionic wavefunctions before and after an
electron hop. The wavefunctions are those of harmonic oscillators, and hence of the Gaussian
shape. If the displacement of an ion is different before and after the hop, the wavefunction
overlap is Gaussian in the displacement difference. At the same time, the polaron potential
energy Ep (the sum of the electron–phonon interaction and energy of lattice deformation) is
quadratic in displacement. Thus, in general, the polaron mass is exponential in the polaron
energy:

m∗ ≈ m0 exp

(
γ

Ep

h̄ω

)
, (24)

where m0 is the bare electron mass. The above formula is a result of the Lang–Firsov
approximation [41]. The coefficient γ depends on the shape of the e–ph interaction. In the
limit of large phonon frequencies

γ = 1 −
∑

m fm(0) fm(a)∑
m f 2

m(0)
, (25)

where a is a nearest-neighbour vector. For a short-range e–ph interaction, such as the Holstein,
γ ≈ 1, which reflects the fact that the lattice deformation has to be created anew after every
electron hop. In contrast, for a long-range e–ph interaction γ < 1, which leads to a significant
exponential reduction of mass. Physically, the mass is reduced because a given oscillator is
partially deformed even before the electron gets close to it. The additional displacement needed
after the electron approaches is relatively small, which greatly increases the overlap integrals.

A particular long-range e–ph model was proposed in [25]. It is characterized by the
following force function:

fm(n) = κa2 (n − m)z

|n − m|3 = κa2h

[(n − nm)2 + h2]3/2
. (26)

This is a z-projection of the unscreened Coulomb force between an electron n moving in
the xy plane and ions m vibrating along the z direction. The plane of the ions is separated
from the plane of electron motion by a distance h. A one-dimensional version of the model is
illustrated in figure 2(a). The interaction strength is characterized by a force constant κ . The
path confinement function � that corresponds to the force (26) is shown in figure 2(b). It needs
to be compared with its short-range (Holstein) counterpart �Hol(ri − r j ) = κ2δri ,r j . Since a
path’s statistical weight depends exponentially on �, in the case of long-range e–ph interaction
the path diffuses exponentially more easily, leading to an exponentially smaller effective mass.
This is how the mass reduction can be understood in terms of path integrals. This polaron type
was named a ‘small Fröhlich polaron’ in [25].

The masses of the small Holstein polaron (SHP) and small Fröhlich polaron (SFP)
calculated with PIQMC for h = a are compared in figure 3(a) and (b). SFP is slightly heavier
at small λ but much lighter at large λ. At large coupling, both masses gradually approach
the Lang–Firsov limit (24) which are indicated by thin dashed (SHP) and solid (SFP) lines.
SFP is always much closer to the Lang–Firsov behaviour than SHP. The ratio of the two
masses is a non-monotonic function (see figure 3(c)). This observation was later confirmed
by exact diagonalization [42] and variational [43, 44] methods. The most interesting property
of SFP is exponential reduction of mass relative to SHP. This effect is independent of the
dimensionality because it originates solely from the long-range nature of the e–ph interaction.
The mass reduction can be very large. For example, in two dimensions at h̄ω/t = 0.5 and
λ = 1.2, mSHP ≈ 220 while mSFP is only ≈ 9. For SFP, the parameter γ = 0.387 in d = 1

8
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Figure 2. (a) One-dimensional model with a long-range electron–phonon interaction. The electron
moves along the bottom chain of sites shown by full circles (denoted by n). The vibrating ions
shown by open circles oscillate along the z-axis. The interaction is characterized by the z-projection
of the Coulombic force (26). (b) Spatial profile of the path confinement function � defined in (15).
The parameters are κ = 1 and h = a. Negative � is shown in order to draw an analogy with a
potential well. This shape of � should be contrasted with that of the Holstein model �Hol = κ2δxx ′ .
A smooth � cannot localize the path as well as a sharp one, which results in a smaller effective mass
in the case of a long-range model.

Figure 3. Effective masses of small Holstein and Fröhlich polarons in units of m0 = h̄2/(2ta2):
(a) d = 1, (b) d = 2. Dashed and solid thin lines indicate the strong-coupling limit m∗ =
m0 exp(γ λz/ω̄) for the Holstein and Fröhlich cases, respectively. For the Holstein polaron, γ = 1.
For the Fröhlich polaron, γ = 0.387 in d = 1 and γ = 0.334 in d = 2. (c) The mass ratio of the
small Holstein and Fröhlich polarons for several model parameters. The ratio scales exponentially
with the coupling, and could exceed 100.

and γ = 0.334 in d = 2. Thus the SFP mass scales roughly as the cubic root of the SHP
mass. In [28], an additional screening factor was added to the force function (26). All polaron
properties smoothly interpolated between those of SHP and SFP as the screening radius was
changed from zero to infinity.

5.2. Anisotropy enhancement by electron–phonon interaction

In two and three dimensions an e–ph interaction can be anisotropic. In particular, it can have
different effective ranges along two different lattice directions. As a result, the polaron can
be heavy (Holstein-like) along one direction and at the same time much lighter (Fröhlich-
like) along another direction. As functions of the e–ph strength, both masses will increase
exponentially but with different parameters γ . Thus the ratio of the two masses will also be
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Figure 4. (a) A three-dimensional polaron model with anisotropic e–ph interaction. The electron
moves within and between the planes of filled circles with hopping integrals −tx and −tz ,
respectively. It interacts with vibrating ions shown by open circles. The vibrations are polarized
along the z-axis. The distance between the planes is equal to the lattice period of the planes. In
the case of a long-range interaction the polaron is Fröhlich-like in the xy plane and Holstein-like
along the z direction. (b) The (negative) polaron path confinement function −κ−2�(x, y, z). An
additional factor exp(−|n − m|/R) with R = 10 lattice constants in the x direction has been added
to the force function (26) to help the lattice sum to converge. The confining profile along z is much
steeper than along x .

exponential in the polaron energy:

mz

mx
∼ exp

[
(γz − γx)

Ep

h̄ω

]
. (27)

Therefore one should expect an enhancement of the anisotropy of the polaron spectrum by e–
ph interaction. This effect was confirmed by exact PIQMC simulations in [26]. The model
was a three-dimensional extension of (26) with the distance between the planes h being equal
to the lattice period a (see figure 4(a)). For this interaction, Ep = 2.93κ2/(2Mω2), and the
coupling constant is defined as λ = Ep/(6tx). Upon hopping along the z-axis, the electron
must reverse the sign of the lattice deformation. This leads to a very small overlap of the ionic
wavefunction before and after the hop. The z-effective mass is therefore even larger than in
the Holstein case. In contrast, upon hopping in the xy-plane, the deformation is partially pre-
existing before the hop. The overlap integrals are relatively large and the respective mass small.
The difference is also reflected in the shape of the path confinement function � as shown in
figure 4(b). It is much steeper along the z-axis than along the x-axis, which also hints at an
exponential difference between the two respective masses.

The results of PIQMC analysis of the model are summarized in figure 5 [26]. Panel (a)
shows a typical behaviour for the polaron masses at h̄ω = 1.0tx and tz = 0.25tx . (The
latter choice ensures the isotropy of the bare spectrum, since the lattice constant in the z
direction is twice that in the x direction.) As expected, m∗

xy grows exponentially with coupling.
Interestingly, the z mass appears to grow super-exponentially with a large quadratic component:
m∗

z ≈ mxy0 exp(1.26λ + 0.88λ2). It is possible, though, that this is still a transient regime, and
m∗

z approaches pure exponential growth at still larger λ. (Even if this happens, mz will be too
large to be a physically interesting parameter.) The mass anisotropy for several sets of model
parameters is shown in figure 5(b). Due to the super-exponential growth of m∗

z , the anisotropy
is also super-exponential, e.g. m∗

z /m∗
xy ≈ exp(0.42λ + 0.71λ2) for h̄ω = 1.0tx (circles). At
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Figure 5. (a) Masses m∗
xy (filled circles) and m∗

z for h̄ω = 1.0tx , tz = 0.25tx . (b) Mass anisotropy
of the three-dimensional model (26) for three combinations of the model parameters. The mass
anisotropy can exceed 1000.

a smaller frequency h̄ω = 0.5tx (squares) the anisotropy is exponentially larger, as expected
from the reasoning given above. This implies the existence of an isotope effect on the mass
anisotropy. The third model parameter, the bare hopping anisotropy, turns out to have little
effect. The mass anisotropy for tz = 0.1 tx and the same phonon frequency h̄ω = 0.5tx is
shown by triangles in figure 5(b). While being 2.0–2.5 times larger at small λ, the anisotropy
approaches that of the tz = 0.25tx case at large λ. This shows that it is primarily the e–ph
interaction that governs the polaron anisotropy. This conclusion is further supported by studies
of the Holstein model with anisotropic bare hopping [26] where no enhancement of the polaron
anisotropy was observed.

In relation to the effect described it is interesting to note a well-documented discrepancy
between the theoretical and experimental anisotropy of the cuprates [45]. According to band
structure calculations, the anisotropy of resistivity of LSCO and YBCO compounds should be
about 10–30 [46, 47]. At the same time, the experimental anisotropy of resistivity is between
102 and 103 depending on the level of doping. The anisotropy of bismuthates is even higher,
(5−80)×104 [45], which is difficult to explain with the conventional Bloch–Boltzmann theory.
According to the present results, anisotropic interaction with z-polarized phonons is a sufficient
condition for a very large z effective mass. Of course, the anisotropy of mass and resistivity
are two different things, but it would be fair to assume that the former is at least partially
responsible for the latter (see, e.g., [45] page 85). This idea still awaits proper development.
There are also some alternative explanations of the anomalous z-transport [48].

5.3. Peak in the polaron density of states

The estimator for the polaron spectrum is given by formula (5). There the polaron momentum
K is simply a parameter. This means that statistics for all K can be collected during a single run.
This remarkable property is a unique feature of the PIQMC method. Since the entire spectrum
is calculated in one go the polaron density of states (DOS) ρ(E) = N−1

∑
K δ(E − EK + E0)

can be computed at the end of the run by discretizing the energy interval and histogramming
EK values.

It is well known that in the anti-adiabatic regime (h̄ω � t) the Holstein polaron spectrum
retains its bare tight-binding shape, albeit with an exponentially reduced mass. It has been
observed, however, that in the adiabatic regime (h̄ω � t) the polaron spectrum in d = 1 flattens
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Figure 6. (a) and (b) The evolution of the density of states of the Holstein polaron with phonon
frequency ω in d = 2 and 3, respectively. Each graph was obtained by calculating the polaron
spectrum at 100 000 K points randomly distributed in the Brillouin zone, and histogramming the
results between 50 energy bins. Each spectrum point was calculated by averaging 250 000 values
of cos K�r taken every 10th path update. Every 5000 measurements the path was reset and then
equilibrated for 1000 updates. (c) The same for the small Fröhlich polaron in d = 2.

at large momenta [49–52]. At weak coupling the flattening can be understood as hybridization
between the cosine-shaped electron spectrum and a momentum-independent phonon mode. As
a result the spectrum is flatter at large K. At strong coupling the hybridization picture becomes
less intuitive, but the flattening remains as a matter of fact. Calculation of the spectrum in
higher dimensions is harder, and prior to the advent of PIQMC only a handful attempts had
been made. The first full polaron spectra (i.e. over the entire Brillouin zone) and DOS in d = 2
and 3 were calculated in [24]. The flattening of the spectrum was found to persist. Moreover,
because in high dimensions the relative weight of states with large K increases, the flat region
of the spectrum occupies an increasingly larger volume of the Brillouin zone. As a result, DOS
develops a massive peak at the top edge of the polaron band. A typical Holstein polaron DOS
is shown in figures 6(a) and (b). The peak is more pronounced in d = 3 than in d = 2 because
there are relatively more states with large K. As the phonon frequency increases DOS assumes
the familiar tight-binding shapes.

The density of states of the d = 2 small Fröhlich polaron, characterized by the force
function (26), is shown in figure 6(c). For the same total bandwidth or coupling constant
this DOS is always closer to the tight-binding shape than the Holstein DOS, indicating that
spectral flattening is less pronounced in long-range e–ph models. As in the effective mass case
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(see figure 3) a long-range model appears to be more easily describable by the Lang–Firsov
approximation than a short-range model. The observed radical transformation of the Holstein
DOS suggests that care must be used in interpreting results of the short-range model in the
adiabatic regime. For example, in d = 3 the properties of the ground state (e.g. the effective
mass) have very little to do with the properties of the majority of polaron states that determine
thermodynamic responses of the system.

5.4. Isotope exponents

The isotope effect is a key indicator of the importance of an e–ph interaction in a given system.
The role that the isotope effect has played in the field of superconductivity is well known.
In a polaron system, the e–ph interaction plays the central role. A key polaron property,
the effective mass, exponentially depends on both the interaction strength and the phonon
frequency (see (24)). Within the Lang–Firsov approximation the isotope exponent is (the
polaron shift Ep is independent of the ion mass)

αm∗ = ∂ ln m∗

∂ ln M
= γ

2

Ep

h̄ω
. (28)

α is proportional to the coupling constant and hence can be arbitrarily large. Therefore a large
isotope exponent on mass is evidence for polaronic carriers in the system. A large isotope
effect was observed, for example, on the magnetic penetration depth in cuprates [53, 54], which
was interpreted as evidence for bipolaronic carriers in the superconducting state. In the weak
coupling regime, α can be computed perturbatively (for the second-order results see [28, 29]).
The isotope exponent is again proportional to λ but with a different coefficient. The two linear
dependences should be smoothly connected over the polaron crossover.

The PIQMC method allows direct calculation of the isotope exponent as a derivative of the
effective mass. The corresponding estimator is given by (23). The mass isotope exponents for
the small Holstein polaron are shown in the top row of figure 7. Before the polaron transition
α is small, reflecting the non-polaronic character of the carrier. Note that in d = 2 and 3, α is
negative at small frequencies [29]. After the polaron crossover, which always begins at λ ∼ 1
but ends at a λ that increases with ω, the isotope exponent quickly reaches the strong-coupling
asymptotic behaviour (28) with γ = 1. Notice that the beginning and the end of the transition
are clearly identifiable on the plots. Thus the mass isotope exponent can be useful in analysing
the Holstein polaron transition.

The case of the small Fröhlich polaron is somewhat different (see the bottom row of
figure 7). At small coupling, the exponent grows linearly with a γ close to the strong-coupling
limit, but then deviates to smaller values. The exponent returns to the strong-coupling limit at
much larger λ, the value of which decreases with increasing ω. This final approach happens
when the entire path is mostly confined to one lattice site, and only rarely deviates to a first
nearest neighbour. This interesting behaviour is not yet fully understood.

Apart from the isotope effect on the polaron mass, it is meaningful to consider the isotope
effects on the polaron spectrum and even the density of states. Those effects have been analysed
in [27].

6. Summary and path forward

We have reviewed the basics of the path-integral approach to the lattice polaron. It consists
of the two main components: analytical integration of phonons and Monte Carlo simulation
of a self-interacting polaron path. The phonon integration reduces the number of degrees of
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Figure 7. Mass isotope exponents of the small Holstein and small Fröhlich polarons in different
dimensions and for different phonon frequencies. The thin solid lines indicate the strong-coupling
limit α = γ

2
λzt
h̄ω

. Notice that α of the Holstein polaron in d = 2 and 3 is negative at small ω and λ.

freedom from N + 1 to just 1. The price for this reduction is the need to evaluate the polaron
action for each polaron path. On a lattice such evaluation can be performed efficiently due to
the discrete structure of the path, as described in section 3. Thus phonon integration results
in a significant increase in the accuracy and efficiency of the method. Another advantage of
phonon integration is the ability to treat short-range and long-range e–ph interactions on an
equal footing. Precomputing the path-confining function � makes the time required to compute
the action independent of the shape of the force function.

The power of a Monte Carlo method is the absence of any bias. The update process is
approximation-free and all the estimators are statistically unbiased. As a result, all the physical
properties are exact to within statistical errors. (The latter need to be dealt appropriately.)
Phonon integration eliminates finite-size errors and continuous-time formulation eliminates
finite time-step errors. The method works for infinite lattices of any dimensionality and
symmetry.

Using this approach, several physically interesting results have been obtained. These were
reviewed in the previous section. There are multiple ways in which the present algorithm
can be extended beyond the single polaron with nearest neighbour hopping and dispersionless
phonons. Phonon integration can be performed for any phonon dispersion and an arbitrary
number of branches [37]. Long-range and anisotropic hopping can be added as long as the
hopping amplitudes are negative to avoid a sign problem. Some anisotropic hopping models
have already been studied in [24]. Polarons on non-cubic lattices have been analysed in [29].
Path integrals are also well suited to the study of temperature effects, which is just a parameter
of the simulations. So far, no temperature effects have been analysed with this method. Perhaps
the most interesting extension is beyond the single particle. The ground state of a two-polaron
system, the bipolaron, is symmetric with respect to particle exchange. Therefore it can be
simulated without a sign problem. Then the singlet–triplet splitting and the properties of
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both bipolaron types can be calculated as explained in section 2. The first results obtained
with this method have been published recently in [55–57]. Generalization to three and more
particles is less straightforward because it necessarily generates a sign problem. It should
be expected, however, that the fermionic sign problem will be less severe for e–ph models
than for electron correlation models, such as the Hubbard model. Real-space pairing induced
by phonons increases the statistical weight of even permutations over odd ones, effectively
making the system more boson-like. This effect would be especially pronounced at strong e–
ph couplings and low particle densities. Coupled with the capability to vary the temperature this
should make it possible to calculate the critical temperature of a (bi)polaronic superconductor
using the method of [58].
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